LATEST NEWS

A smart radar system for gesture recognition and non-contact vital signs monitoring.

This week, at FutureSummits 2019, imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, presents a compact highly-sensitive 140GHz MIMO  (multiple-input multiple-output) radar system.  The MIMO setup is demonstrated for gesture recognition, supporting intuitive man-machine interactions. In addition, the ultra-fine resolution of this radar allows the detection micro-skin movements related to vital signs serving applications like non-contact driver monitoring or patient monitoring.

Key differentiators of imec’s 140GHz radar-on-chip prototype system are its small size and high radar performance – in terms of resolution and motion sensitivity. The radar operates up to 10m range, with 15mm range resolution and 10GHz of RF bandwidth. Multiple antenna paths are incorporated to enable a complete (virtual) 1×4 MIMO configuration to achieve angular target separation. The transceiver chip features on-chip antennas, and are integrated in 28nm bulk CMOS technology, ensuring a low-cost solution at high volume production. These properties make the radar system particularly appealing for applications where high-precision, small-motion based detection is key.

By adding machine learning capabilities, imec has now demonstrated the feasibility of the radar to detect and classify small motions based on Doppler information.

“This opens new opportunities, for example, enabling gesture recognition for intuitive man-machine interactions”, adds Barend van Liempd, R&D manager at imec. “Think about the AR/VR space, where the new radar can support intuitive interaction with virtual objects. Gesture recognition can potentially also enable intuitive device control – complementary to existing interfaces such as voice control or smart touch screens.”

Being insensitive to lighting conditions and preserving privacy (a radar can so far not recognize humans), a radar solution has particular advantages over other types of motion sensors, for example time-of-flight-based infrared cameras. And, being extremely compact, imec’s 140GHz radar system can be integrated invisibly in almost every device, such as laptops, smartphones or screen bezels.

Imec has developed a specific machine learning algorithm based on a multi-layer neural network including an LSTM layer and using supervised learning to train the inference model by using in-house labeled recordings of more than 25 people, including several captures for each of 7 different gestures. Against the experimental dataset, the model classifies the recorded 7 gestures and predicts the right gesture at least 94% of the time.

Aside from gestures, vital signs can also be measured with very high precision thanks to the high radio frequency. Therefore, the radar is an excellent candidate for in-car vital sign monitoring systems, to enable non-contact tracking of the driver’s state, e.g. to detect falling asleep, abnormal stress levels or possibly to prevent accidents due to acute health hazards, e.g. heart or epilepsy attacks. Another possible application is to monitor small children using motion and vital signs detection, even when the infant is covered by a blanket and asleep, e.g. to provide an alert in case a child is unintentionally left in a vehicle.

To enlarge data richness and spatial information, imec is currently building a 4×4 MIMO radar system, for which a new generation of radar chips is under development – incorporating the TX and RX as separate chips. This will allow a greater flexibility in distributing the MIMO array elements across the available area. It will also be explored if the functionality of the standalone radar chips can be increased, to enable MIMO systems with even larger arrays of chips.

Imec’s 140GHz radar was developed in its open innovation R&D collaborative program on radar technology. Interested companies can partake in the program, or in a bilateral R&D project, or license the technology building blocks.

Lihi

Recent Posts

NVIDIA and AWS Expand Full-Stack Partnership, Providing the Secure, High-Performance Compute Platform Vital for Future Innovation

AWS integrates NVIDIA NVLink Fusion into its custom silicon, including the next-generation Tranium4 chip, Graviton…

2 days ago

Molex Names Top 10 Connectivity and Electronics Design Predictions for 2026, Fueled by Far-Reaching Impact of Artificial Intelligences Across Major Industries

Intensifying AI demands continue to proliferate across aerospace and defense, automotive, consumer electronics, data center,…

2 days ago

Tria Technologies to bring Qualcomm DragonwingTM IQ-6 Series to market with two new compute modules

 TRIA SM2S-IQ615 and TRIA OSM-LF-IQ615 modules enable next-generation edge AI systems across a wide range…

2 days ago

At NeurIPS, NVIDIA Advances Open Model Development for Digital and Physical AI

NVIDIA releases new AI tools for speech, safety and autonomous driving — including NVIDIA DRIVE…

2 days ago

OMRON eases PCB-relay assembly and replacement with P6K surface-mountable sockets

 P6K sockets for G6K through-hole relays ensure reliability, flexibility, and repairability  OMRON Electronic Components Europe…

2 days ago

GEOX.AI and Mitsui Sumitomo Insurance Launch AI-Powered Initiative to Assess Building Risk Across Japan

GEOX.AI, a global leader in AI-driven property intelligence, announced today a strategic partnership with Mitsui…

2 days ago