Categories: LATEST NEWS

Imec Advances Drive Current in Vertical 3D NAND Memory Devices

Results on High Mobility InGaAs to Replace poly-Si as Channel Material Presented at IEDM 2015

WASHINGTON—International Electron Devices Meeting 2015 (IEDM)–Dec. 7, 2015—At this week’s IEEE IEDM conference, nano-electronics research center imec showed for the first time the integration of high mobility InGaAs as a channel material for 3D vertical NAND memory devices formed in the plug (holes) with the diameter down to 45nm. The new channel material improves transconductance (gm) and read current which is crucial to enable further VNAND cost reduction by adding additional layers in 3D vertical architecture.
Non-volatile 3D NAND flash memory technology is used to overcome the scaling issues in conventional planar NAND flash memory technology, suffering from severe cell to cell interferences and read noise due to aggressively scaled dimensions. However, current 3D NAND devices, featuring a poly-Si channel, are characterized by drive current that will linearly decrease with the number of memory layers, which is not sustainable for long-term scaling. This is because the conduction in the poly-silicon channel material is ruled by grain size distribution and hampered by scattering at the grain boundaries and charged defects.
To boost the drive current in the channel, imec replaced the poly-Si channel material with InGaAs through a gate first-channel last approach. The channel was formed by metal organic vapor phase epitaxy (MOVPE) showing good III-V growth selectivity to silicon and holes filling properties down to 45nm. The resulting III-V devices proved to outperform the poly-Si devices in terms of on-state current (ION) and transconductance (gm), without degrading memory characteristics such as programming, erase and endurance.

“We are extremely pleased with these results, as they provide critical knowledge of Flash memory operations with a III-V channel as well as of the III-V interface with the memory stack,” stated An Steegen, Senior Vice president Process Technology at imec. “While these results are shown on full channels, they are an important stepping stone to develop industry-compatible macaroni-type III V channels.”
Imec’s research into advanced memory is performed in cooperation with imec’s key partners in its core CMOS programs including Samsung, Micron-Intel, Toshiba-Sandisk, SK Hynix, TSMC, GlobalFoundries.

Typical ID-VG. In0.6Ga0.4As presents improved ID-VG characteristic. Ion/Ioff ratio of 3 order of magnitude is sufficient for typical NAND operation

News release can be downloaded at https://www2.imec.be/be_en/press/imec-news/imec-IEDM-2015-3D-NAND– IIIV-channels.html

Liat

Recent Posts

New Power Module Enhances AI Data Center Power Density and Efficiency

Microchip’s MCPF1525 power module with PMBus™ delivers 25A DC-DC power, stackable up to 200A The…

4 hours ago

Datarails Launches Spend Control to Give CFOs Full Visibility on Contracts and Eliminate Zombie Subscriptions

New AI-powered platform – the first with full ERP integration – includes an AI agent…

4 hours ago

AccuLine reports 94% sensitivity in clinical trial of its 4-minute cardiac diagnostic system

The study validated the CORA system’s ability to rule out coronary artery disease with a…

2 days ago

Factify Raises $73M to Kill the PDF and Build a New Document Standard for AI

Factify replaces static PDFs with authoritative, intelligent records that allow AI to take charge of…

2 days ago

Mesh Security Raises $12 Million Series A to Power Autonomous Execution for Cybersecurity Mesh at Enterprise Scale

Mesh Security, the company delivering the world’s first Cybersecurity Mesh Architecture (CSMA) platform, today announced…

5 days ago

NetZero Tech Ventures Spotlights Strategic Reset in Climate and Energy Investments

New review by the investment firm examines how climate-tech investors are pivoting toward reliability, AI…

1 week ago