
Abstract
Electrons moving at slow speeds 
much lower than the speed of light are 
described by a wave function which is 
a solution of Pauli’s equation. This is 
a low-velocity limit of the relativistic 
Dirac equation. Here we compare 
two approaches, one of which is the 
more conservative Copenhagen’s 
interpretation denying a trajectory of 
the electron but allowing a trajectory 
to the electron expectation value 
through the Ehrenfest theorem. The 
said expectation value is of course 
calculated using a solution of Pauli’s 
equation. A less orthodox approach is 
championed by Bohm, and attributes 
a velocity field to the electron also 
derived from the Pauli wave function. 
It is thus interesting to compare the 
trajectory followed by the electron 
according to Bohm and its expectation 
value according to Ehrenfest. Both 
similarities and differences will be 
considered.

[5,6] which stated that the modulus 
square of the wave function is a fluid 
density and the phase is a potential of 
the velocity field of the fluid.
A non-relativistic quantum equation 
for a spinor was first introduced by 
Wolfgang Pauli in 1927 [7], this was 
motivated by the need to explain the 
Stern–Gerlach experiments. Later it 
was shown that the Pauli equation is 
a low-velocity limit of the relativistic 
Dirac equation (see for example [8] 
and references therein). This equation 
is based on a two dimensional operator 
matrix Hamiltonian. Two-dimensional 
operator matrix Hamiltonians are 
common in the literature [9,10,11,
12,13,14,15,16,17,18,19,20,21,22] 
and describe many types of quantum 
systems. A Bohmian analysis of the 
Pauli equation was given by Holland 
and others [3,4], however, the analogy 
of the Pauli theory to fluid dynamics 
and the notion of spin vorticity were 
not considered. In [23] spin fluid 
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1. Introduction
Quantum mechanics is usually 
interpreted by the Copenhagen 
approach. This approach objects to 
the physical reality of the quantum 
wave function and declares it to be 
epistemological (a tool for estimating 
probability of measurements) in 
accordance with the Kantian [1] 
depiction of reality, and its denial of 
the human ability to grasp any thing 
in its reality (ontology). However, we 
also see the development of another 
approach of prominent scholars that 
think about quantum mechanics 
differently. This school believes in 
the ontological existence of the wave 
function. According to this approach 
the wave function is an element of 
reality much like an electromagnetic 
field. This was supported by Einstein 
and Bohm [2,3,4] has resulted in 
different understandings of quantum 
mechanics among them the fluid 
realization championed by Madelung 
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dynamics was introduces for a single 
electron with a spin. One thus must 
contemplate where do those internal 
energies originate? The answer to 
this question seems to come from 
measurement theory [24,25]. Fisher 
information is a basic notion of 
measurement theory, and is a figure of 
merit of a measurement quality of any 
quantity. It was shown [25] that this 
notion is the internal energy of a spin 
less electron (up to a proportionality 
constant) and can be used to partially 
interpret the internal energy of an 
electron with spin. An attempt to 
derive most physical theories from 
Fisher information is due to Frieden 
[26]. It was suggested [27] that there 
exists a velocity field such that the 
Fisher information will give a complete 
explanation for the spin fluid internal 
energy. It was also suggested that 
one may define comoving scalar fields 
as in ideal fluid mechanics, however, 
this was only demonstrated implicitly 
but not explicitly. A common feature 
of previous work on the fluid and 
Fisher information interpretation of 
quantum mechanics, is the negligence 
of electromagnetic interaction thus 
setting the vector potential to zero. 
This was recently corrected in [28].
Ehrenfest [29] published his paper in 
1927 as well with the title: “Remark 
on the approximate validity of 
classical mechanics within quantum 
mechanics”. Using this approach we 
can accept the orthodox Copenhagen’s 
interpretation denying a trajectory of 
the electron but at the same time 
accept the existence of a trajectory 
of the electron’s position vector 
expectation value through Ehrenfest 
theorem. The Ehrenfest approach is 
thus independent of interpretation, 
and can be applied according to both 
the Copenhagen and Bohm schools. 
However, only in the Bohm approach 
may one compare the trajectory of 
the electron to that of its expectation 
value.

We will begin this paper by reminding 
the reader of the basic equation 
describing the motion of a classical 
electron. This will be followed by a 
discussion of Schrödinger equation 
with a non trivial vector potential and 
its interpretation in terms of Bohmian 
equation of motion with a quantum 
force correction. Then we introduce 
Pauli’s equation with a vector potential 
and interpret it in terms a Bohmian 
equation of motion with a quantum 
force correction which is different from 
the Schrödinger case. Finally we derive 
an equation for Pauli’s electron position 
vector expectation value using Ehrenfest 
theorem and compare the result to the 
results obtained in Bohm’s approach, 
similarities and differences will arise, a 
concluding section will follow discussing 
the Stern–Gerlach experiment.

2. A Classical Charged 
Particle

Consider a classical particle with 
the coordinates , mass m and 
charge e interacting with a given 
electromagnetic vector potential 

 and scalar potential . 
We will not be interested in the effects 
of the particle on the field and thus 
consider the field as “external”. The 
action of said particle is:

(1)

The variation of the two parts of the 
Lagrangian are given by:

(2)

(3)

in  the above  and 

 

We use the Einstein summation 
convention in which a Latin index (say 
k, l) takes one of the values k, l ϵ [1, 
2, 3]. We may write the total time 
derivative of  as:
(4) 

Thus, the variation δLi can be written 
in the following form:
(5)
 

(6) 

it follows that:
(7) ϵklnBn = ∂k Al − ∂lAk, Ek=−∂t Ak − ∂k ϕ,

in which ϵkln is the three-index 
antisymmetric tensor. Thus, we may 
write δLi as:
(8) 

We use the standard definition of the 
Lorentz force (MKS units):
(9) 

to write:
(10) 

Combining the variation of Li given in 
Equation (10) and the variation of L0 
given in Equation (2), it follows from 
Equation (1) that the variation of L is:
(11) 

Thus, the variation of the action is:
(12) 

Since the classical trajectory is such 
that the variation of the action on it 



vanishes for a small modification of 
the trajectory  that vanishes at t1 
and t2 but is otherwise arbitrary it 
follows that: 
(13) 
Thus, the dynamics of a classical 
particle in a given electric and 
magnetic field is described by a single 
number, the ratio between its charge 
and mass:
(14) 

The reader is reminded that 
the connect ion between the 
electromagnetic potentials and the 
fields is not unique. Indeed performing 
a gauge transformation to obtain a 
new set of potentials:
(15) 

we obtain the same fields:
(16)

3. Schrödinger’s Theory
Quantum mechanics according to the 
Copenhagen interpretation has lost 
faith in our ability to predict precisely 
the whereabouts of even a single 
particle. What the theory does predict 
precisely is the evolution in time of 
a quantity denoted “the quantum 
wave function”, which is related to a 
quantum particle whereabouts in a 
statistical manner. This evolution is 
described by an equation suggested 
by Schrödinger [30]:
(17) 

in the above i = √−1 and ψ is the 
complex wave function.  is the 
partial time derivative of the wave 
function.  is Planck’s constant 
divided by 2π and m is the particles 
mass. However, this presentation of 

quantum mechanics is rather abstract 
and does not give any physical 
picture regarding the meaning of the 
quantities involved. Thus we write 
the quantum wave function using its 
modulus a and phase φ:
(18) 

We define the velocity field:
(19) 

and the mass density is defined as: 
(20) .
It is easy to show from Equation 
(17) that the continuity equation is 
satisfied:
(21) 

Hence  field is the velocity 
associated with mass conservation. 
However, it is also the mass associate 
with probability a2 (by Born’s 
interpretational postulate) and charge 
density ρ = ea2. The equation for the 
phase φ derived from Equation (17) 
is as follows:
(22) 

In term of the velocity defined 
in Equation (19) one obtains the 
following equation of motion (see 
Madelung [5] and Holland [3]):
(23) 

The right hand side of the above 
equation contains the “quantum 
correction”:
(24) 

For the meaning of this correction 
in terms of information theory see: 
[23,25,27]. These results illustrate 
the advantages of using the two 
variables, phase and modulus, to 
obtain equations of motion that 
have a substantially different form 
than the familiar Schrödinger 
equation (although having the 

same mathematical content) and 
have straightforward physical 
interpretations [2].
The quantum correction Q will of 
course disappear in the classical 
limit h̄ → 0, but even if one intends 
to consider the quantum equation 
in its full rigor, one needs to take 
into account the expansion of an 
unconfined wave function. As Q 
is related to the typical gradient 
of the wave function amplitude it 
follows that as the function becomes 
smeared over time and the gradient 
becomes smal l the quantum 
correction becomes negligible. To put 
in quantitative terms:
(25) 

in which LR is the typical length of the 
amplitudes gradient. Thus:
(26) 

in which  is the classical Lorentz 
force given in Equation (9). If an 
electron transverses a macroscopic 
length this terms seems unimportant.

4. Pauli’s Theory
Schrödinger’s quantum mechanics is 
limited to the description of spin less 
particles. Indeed the need for spin 
became necessary as Schrödinger 
equation could not account for 
the result of the Stern–Gerlach 
experiments, predicting a single spot 
instead of the two spots obtained 
for hydrogen atoms. Thus Pauli 
introduced his equation for a non-
relativistic particle with spin, given by:
(27) 

ψ here is a two dimensional complex 
column vector (also denoted as 
spinor),  is a two dimensional 
Hermitian operator matrix, µ is the 
magnetic moment of the particle, and 
I is a two dimensional unit matrix.  



is a vector of two dimensional Pauli 
matrices which can be represented as 
follows:
(28) 

The ad hoc nature of this equation 
was later amended as it became clear 
that this is the non relativistic limit 
of the relativistic Dirac equation. A 
spinor ψ satisfying Equation (27) must 
also satisfy a continuity equation of 
the form:
(29) 

In the above:
(30) 

The symbol ψ† represents a row spinor 
(the transpose) whose components 
are equal to the complex conjugate 
of the column spinor ψ. Comparing 
the standard continuity equation to 
Equation (29) suggests the definition 
of a velocity field as follows [3]:
(31) 

Holland [3] has suggested the 
following representation of the spinor:
(32) 

In terms of this representation the 
density is given as:
(33)

The mass density is given as:
(34)
The probability amplitudes for spin up 
and spin down electrons are given by:
(35) 

Let us now look at the expectation 
value of the spin:
(36) 

The spin density can be calculated 
using the representation given in 

Equation (32) as:
(37) 

This gives an easy physical 
interpretation to the variables θ, φ as 
angles which describe the projection 
of the spin density on the axes. θ is 
the elevation angle of the spin density 
vector and φ is the azimuthal angle of 
the same. The velocity field can now 
be calculated by inserting ψ given in 
Equation (32) into Equation (31):
(38) 

We are now in a position to calculate 
the material derivative of the velocity 
and obtain the equation of motion for 
a particle with ([3], p. 393, Equation 
(9.3.19)):
(39) 

The Pauli equation of motion differs 
from the classical equation motion 
and the Schrödinger
equation of motion. In addition to the 
Schrödinger quantum force correction 
we have an
additional spin quantum force 
correction:
(40) 

as well as a term characterizing the 
interaction of the spin with a gradient 
of the magnetic field.
(41) 

As both the upper and lower spin 
components of the wave function are 
expanding in
free space the gradients which appear 
in  will tend to diminish for any 
macroscopic scale making this force 
negligible. To estimate the condition 
qualitatively we introduce the typical 
spin length:

(42) 

Using the above definition we may 
estimate the spin quantum force:
(43) 

this suggested the definition of the 
hybrid typical length:
(44) 

In terms of this typical length we may 
write:
(45) 

Thus the conditions for a classical 
trajectory become:
(46) 

Another important equation derived 
from Equation (27) is the equation of 
motion for the spin orientation vector 
([3], p. 392, Equation (9.3.16)):
(47) 

The quantum correction to the 
magnetic field explains [3] why a spin 
picks up the orienta-tion of the field in 
a Stern–Gerlach experiment instead 
of precessing around it as a classical 
magnetic dipole would.
Finally we remark that despite the 
fact that the electron is (as far as the 
empirical evidence suggests) a point 
particle and thus cannot rotate with 
respect to its center of mass as a rigid 
finite body would, there is a long and 
respectable tradition of attributing to 
the electron a “classical” spin [31–
34], as if it was rigid body. Despite 
some success of this approach we 
regard it as highly non-intuitive.

5. Ehrenfest Theorem
According to the Copenhagen school of 



quantum mechanics, no attribute can 
be given to the electron unless it can 
be measured (see for example [35]). 
Now according to the Heisenberg 
uncertainty rule, one cannot measure 
both the position and momentum 
(which are complementary attributes 
and do not commute) of the electron 
at the same time. Hence, two 
attributes that are needed to define 
a trajectory: position and direction of 
propagation cannot be attributed to 
the electron simultaneously. Thus the 
above electron equations of motion 
are not accepted by all quantum 
physicists. In fact, physicists who 
follow the Copenhagen school of 
quantum mechanics declare that a 
quantum electron does not have a 
trajectory.
Of course, not all quantum physicists 
follow the Copenhagen school, as 
many follow Bohm’s [2] school of 
thought (Einstein, Holland [3], Durr 
& Teufel [4] etc.) which do assign a 
trajectory to the electron, despite the 
fact that velocity and position cannot 
be measured at the same time. 
According to this school of thought a 
trajectory is an ontological property of 
the electron and it exists regardless 
of our ability to measure it (in general 
it is believed that reality exists 
regardless of our ability to observe 
it). The reader is also referred to 
[36] which study proton trajectories. 
Those differ from the subject of the 
current paper which is electrons. 
Protons are not point particles like 
electrons and thus they can “spin” 
also in a classical sense.
However, all quantum physicists 
agree that one can describe the 
trajectory of the expectation value 
of various operators such as position 
and momentum associated with the 
electron’s trajectory. This calculation 
is carried out through the Ehrenfest 
Theorem [37]. The theorem states 
that for every quantum operator Ao 
with expectation value:

(48) 

the following equality holds:
(49) 

The position and velocity operators 
defined as [37]:
(50) 

For a Schrödinger’s electron (that is 
without spin) the following results are 
obtained by Griffiths [37] by inserting 
the above operators into Equation (49):
(51) 

Thus the electron position expectation 
value satisfies the equation:
(52) 

this equation resembles the classical 
and quantum equations of motion 
but also differs from them in many 
important aspects. First let us 
compare it with Equation (13), let us 
also assume that . In this case:
(53) 

thus as noted by many authors, even 
in this case the expectation value 
equations differ from the classical 
equation of motion except for a very 
restrictive class of linear electric 
fields. The difference is even more 
pronounced for the case  which 
only takes a conventional “Lorentz 
force” form for a constant magnetic 
field  [37]:
(54) 

Comparing Equation (52) with the 
quantum motion Equation (23), we see 
that the expecta-tion value equation 
does not contain a quantum force 
term, which is a further justification 

to our assumption that this term may 
be neglected on macroscopic scales.
Let us now turn our attention to the 
more realistic Pauli electron which 
does possess spin, Equation (51) now 
take the form:
(55)
 

in which in the last term we use 
the Einstein summation convention. 
However:
(56) 

The value of this commutation relation 
can be deduced by operating with the 
above operator on an arbitrary wave 
function ψ.
(57) 

Or in operator jargon:
(58) 

It thus follows that:
(59) 

in which we have used Equation (37). 
Inserting Equation (59) into Equation 
(55):
(60)

comparing the above equation to 
Equation (39) it follows that the 
only quantum force surviving the 
expectation value averaging is the 
one describing the effect of the 
magnetic field gradient on the spin 
vector which is in accordance with 
what should be expected in the 
macroscopic limit thus leading to the 
Stern–Gerlach experiment.



Figure 1: A schematics of Stern–Gerlach experiment. Neutral particles 
travelling through an inhomo-geneous magnetic field, and being deflected up 
or down depending on their spin; (1) particle source,(2) beam of particles, (3) 
inhomogeneous magnetic field, (4) classically expected result (neglecting the 
quantum spin force), (5) observed result.

6. Conclusions: Spin 
Orientation and 

the Stern–Gerlach 
Experiment

We have seen how the Ehrenfest 
theorem approach causes “quantum 
forces” to disap-pear. Those forces 
disappear also in Bohm’s approach if 
one consider macroscopic scales of 
propagation.
The Stern–Gerlach experiment is an 
example of using the spin force term 
given in Equation (41) to separate 
spin up and spin down particles 
thus obtaining from a single ray of 
particles two spots. If the magnetic 
field gradient is dominant in a single 
direction (say z) we may write 
Equation (41) as:
(61) 

hence depending on the values 
some particle will move up and some 
will move down creating two spots 
(see Figure 1).
The Stern–Gerlach experiment is 
usually performed with a neutral 
particle, not with charged particles 
such as electrons. The reason for this 
is that generally speaking the classical 
Lorentz forces are much stronger than 
the quantum spin force and thus 
the two-spot effect is not observed. 
Holland shows by simulating Equation 
(47) that the spins in a Stern–Gerlach 
rotate in the direction or opposite 
to the direction of the magnetic 
field depending on the trajectory of 
the particle, that is to which spot it 
belongs (see Holland [3] Figure 9.13). 
Notice, however, that from an energy 
perspective the lowest energy belong 
to the case in which the spin (and thus 
its related magnetic dipole) point at 
the direction of the field.
The energy value is given by the 
expectation value of the Hamiltonian:
(62) 

If the direction of the field  is defined 
as a z direction it follows that:
(63) 

So particles with a definite spin 
direction (up or down) may have an 
upper or lower energy depending on 
the value of µ. For an electron µ is the 
Bohr magneton:
(64) 

and thus lower spin electrons will 
have a lower energy, if Bz is constant 
we may write this
term in the “classical” form using a 
magnetic dipole:
(65) 

hence the magnetic dipole will point 
in the direction of the field for a lower 
energy configu-rations (spin down) 
and in the opposite direction for the 
higher energy configuration (spin 
up). As systems tend to relax to their 
lower energy state, one may ask why 
do the particles in a Stern–Gerlach 
experiment do not relax to the spin 
down configuration and instead split 

to beams of spin up and spin down 
with about the same size? The answer 
may be connected to the fact that in 
this type of experiment the electrons 
feel the magnetic field for only a short 
while and do not have enough time 
to relax to their minimum energy 
configurations.
This is not the case in NMR and MRI 
experiment in which the magnetic 
dipoles are under the influence 
of a strong magnetic field, for a 
long duration. In those cases the 
magnetization defined as:
(66) 

satisfies the Bloch phenomenological 
equations:
(67) 

in the above T1 and T2 are typical 
relaxation t imes and γ is a 
gyromagnetic ratio which for an 
electron takes the value:
(68) 



The magnetization satisfying the 
above equation eventually relaxes to 
the direction of the field which is the 
minimal energy configuration (Figure 2).
As a future direction to the current 
research it may be interesting to 
study the same problem for a fully 
relativistic electron, however, this will 
require using a Dirac equation rather 
than Pauli’s equation.
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