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Abstract

Electrons moving at slow speeds
much lower than the speed of light are
described by a wave function which is
a solution of Pauli's equation. This is
a low-velocity limit of the relativistic
Dirac equation. Here we compare
two approaches, one of which is the
more conservative Copenhagen’s
interpretation denying a trajectory of
the electron but allowing a trajectory
to the electron expectation value
through the Ehrenfest theorem. The
said expectation value is of course
calculated using a solution of Pauli’s
equation. A less orthodox approach is
championed by Bohm, and attributes
a velocity field to the electron also
derived from the Pauli wave function.
It is thus interesting to compare the
trajectory followed by the electron
according to Bohm and its expectation
value according to Ehrenfest. Both
similarities and differences will be
considered.

1. Introduction
Quantum mechanics is usually
interpreted by the Copenhagen
approach. This approach objects to
the physical reality of the quantum
wave function and declares it to be
epistemological (a tool for estimating
probability of measurements) in
accordance with the Kantian [1]
depiction of reality, and its denial of
the human ability to grasp any thing
in its reality (ontology). However, we
also see the development of another
approach of prominent scholars that
think about quantum mechanics
differently. This school believes in
the ontological existence of the wave
function. According to this approach
the wave function is an element of
reality much like an electromagnetic
field. This was supported by Einstein
and Bohm [2,3,4] has resulted in
different understandings of quantum
mechanics among them the fluid
realization championed by Madelung

[5,6] which stated that the modulus
square of the wave function is a fluid
density and the phase is a potential of
the velocity field of the fluid.

A non-relativistic quantum equation
for a spinor was first introduced by
Wolfgang Pauli in 1927 [7], this was
motivated by the need to explain the
Stern—Gerlach experiments. Later it
was shown that the Pauli equation is
a low-velocity limit of the relativistic
Dirac equation (see for example [8]
and references therein). This equation
is based on a two dimensional operator
matrix Hamiltonian. Two-dimensional
operator matrix Hamiltonians are
common in the literature [9,10,11,
12,13,14,15,16,17,18,19,20,21,22]
and describe many types of quantum
systems. A Bohmian analysis of the
Pauli equation was given by Holland
and others [3,4], however, the analogy
of the Pauli theory to fluid dynamics
and the notion of spin vorticity were
not considered. In [23] spin fluid



dynamics was introduces for a single
electron with a spin. One thus must
contemplate where do those internal
energies originate? The answer to
this question seems to come from
measurement theory [24,25]. Fisher
information is a basic notion of
measurement theory, and is a figure of
merit of a measurement quality of any
quantity. It was shown [25] that this
notion is the internal energy of a spin
less electron (up to a proportionality
constant) and can be used to partially
interpret the internal energy of an
electron with spin. An attempt to
derive most physical theories from
Fisher information is due to Frieden
[26]. It was suggested [27] that there
exists a velocity field such that the
Fisher information will give a complete
explanation for the spin fluid internal
energy. It was also suggested that
one may define comoving scalar fields
as in ideal fluid mechanics, however,
this was only demonstrated implicitly
but not explicitly. A common feature
of previous work on the fluid and
Fisher information interpretation of
quantum mechanics, is the negligence
of electromagnetic interaction thus
setting the vector potential to zero.
This was recently corrected in [28].
Ehrenfest [29] published his paper in
1927 as well with the title: “"Remark
on the approximate validity of
classical mechanics within quantum
mechanics”. Using this approach we
can accept the orthodox Copenhagen’s
interpretation denying a trajectory of
the electron but at the same time
accept the existence of a trajectory
of the electron’s position vector
expectation value through Ehrenfest
theorem. The Ehrenfest approach is
thus independent of interpretation,
and can be applied according to both
the Copenhagen and Bohm schools.
However, only in the Bohm approach
may one compare the trajectory of
the electron to that of its expectation
value.

We will begin this paper by reminding
the reader of the basic equation
describing the motion of a classical
electron. This will be followed by a
discussion of Schrédinger equation
with a non ftrivial vector potential and
its interpretation in terms of Bohmian
equation of motion with a quantum
force correction. Then we introduce
Pauli’s equation with a vector potential
and interpret it in terms a Bohmian
equation of motion with a quantum
force correction which is different from
the Schrédinger case. Finally we derive
an equation for Pauli’s electron position
vector expectation value using Ehrenfest
theorem and compare the result to the
results obtained in Bohm’s approach,
similarities and differences will arise, a
concluding section will follow discussing
the Stern—Gerlach experiment.

2. A Classical Charged

Particle
Consider a classical particle with
the coordinates ¥(f), mass m and
charge e interacting with a given
electromagnetic vector potential
A(X,t) and scalar potential ¢(%.t),
We will not be interested in the effects
of the particle on the field and thus
consider the field as “external”. The
action of said particle is:
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The variation of the two parts of the
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We use the Einstein summation
convention in which a Latin index (say
k, I) takes one of the values k, [ € [1,
2, 3]. We may write the total time
derivative of 4 as:
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Thus, the variation 0L, can be written
in the following form:
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in which €, is the three-index
antisymmetric tensor. Thus, we may
write oL, as:
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We use the standard definition of the
Lorentz force (MKS units):
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Combining the variation of Li given in
Equation (10) and the variation of LO
given in Equation (2), it follows from
Equation (1) that the variation of L is:
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Thus, the variation of the action is:
(12)
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Since the classical trajectory is such
that the variation of the action on it



vanishes for a small modification of
the trajectory 6X that vanishes at t1
and t2 but is otherwise arbitrary it
follows that:

(13) mt =F :e[ﬁx §+E} == %{i’x E+E}.
Thus, the dynamics of a classical
particle in a given electric and
magnetic field is described by a single
number, the ratio between its charge
and mass:

(14) k= & =
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The reader is reminded that
the connection between the
electromagnetic potentials and the
fields is not unique. Indeed performing
a gauge transformation to obtain a

new set of potentials:

(15) A/=4+ VA, @ =@ — %A.

we obtain the same fields:
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3. Schrodinger’s Theory
Quantum mechanics according to the
Copenhagen interpretation has lost
faith in our ability to predict precisely
the whereabouts of even a single
particle. What the theory does predict
precisely is the evolution in time of
a quantity denoted “the quantum
wave function”, which is related to a
quantum particle whereabouts in a
statistical manner. This evolution is
described by an equation suggested
by Schrédinger [30]:

(17) iy = Ay,
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in the above i = V-1 and y is the
complex wave function. ¥ = % is the
partial time derivative of the wave
function. 1 = 2’—; is Planck’s constant
divided by 2n and m is the particles

mass. However, this presentation of

quantum mechanics is rather abstract
and does not give any physical
picture regarding the meaning of the
quantities involved. Thus we write
the quantum wave function using its
modulus a and phase ¢:

(18) y = ae',

We define the velocity field:
19) os="vp— L4

m m

and the mass density is defined as:
(20) p = ma?. .

It is easy to show from Equation
(17) that the continuity equation is
satisfied:
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Hence 7s field is the velocity
associated with mass conservation.
However, it is also the mass associate
with probability a? (by Born’s
interpretational postulate) and charge
density p = ea?. The equation for the
phase ¢ derived from Equation (17)
is as follows:
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In term of the velocity defined
in Equation (19) one obtains the
following equation of motion (see
Madelung [5] and Holland [3]):
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The right hand side of the above
equation contains the “quantum
correction”:

h2 ‘__72 Fj
(24 o= At
For the meaning of this correction
in terms of information theory see:
[23,25,27]. These results illustrate
the advantages of using the two
variables, phase and modulus, to
obtain equations of motion that
have a substantially different form
than the familiar Schrdédinger
equation (although having the

same mathematical content) and
have straightforward physical
interpretations [2].

The quantum correction Q will of
course disappear in the classical
limit 'h— 0, but even if one intends
to consider the quantum equation
in its full rigor, one needs to take
into account the expansion of an
unconfined wave function. As Q
is related to the typical gradient
of the wave function amplitude it
follows that as the function becomes
smeared over time and the gradient
becomes small the quantum
correction becomes negligible. To put
in quantitative terms:

(25) Fo——Yo=tr, Lpa2
- 2mL}, |VR|

in which L is the typical length of the
amplitudes gradient. Thus:
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in which FL is the classical Lorentz
force given in Equation (9). If an
electron transverses a macroscopic
length this terms seems unimportant.

4. Pauli’s Theory
Schrédinger’s quantum mechanics is
limited to the description of spin less
particles. Indeed the need for spin
became necessary as Schrodinger
equation could not account for
the result of the Stern—Gerlach
experiments, predicting a single spot
instead of the two spots obtained
for hydrogen atoms. Thus Pauli
introduced his equation for a non-
relativistic particle with spin, given by:

(27) ihlf:’ = H'plp, Ap= -——[V - —A]z-
+uB-#+ep=HsI+uBE-v

w here is a two dimensional complex
column vector (also denoted as
spinor), Hp is a two dimensional
Hermitian operator matrix, y is the
magnetic moment of the particle, and

I is a two dimensional unit matrix. &



is a vector of two dimensional Pauli
matrices which can be represented as

follows:
s (89 )om (5 5)

(28)=( "

The ad hoc nature of this equation
was later amended as it became clear
that this is the non relativistic limit
of the relativistic Dirac equation. A
spinor y satisfying Equation (27) must
also satisfy a continuity equation of
the form:

29) 9pp g
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In the above:
(30) P = Py,
Zmz 5= ¥V — (Voh)y] —kApy.

The symbol wt represents a row spinor
(the transpose) whose components
are equal to the complex conjugate
of the column spinor . Comparing
the standard continuity equation to
Equation (29) suggests the definition
of a veIocity field as follows [3]:
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Holland [3] has suggested the
following representation of the spinor:

(32) q';:Re";( cos(g)e“a ) > ( Py )
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In terms of this representation the
density is given as:
(33) R*=y'p=pp=R= 7.
The mass density is given as:
(34) o= myp'yp = mR* = mp,,

The probability amplitudes for spin up
and spin down electrons are given by:

(35) ay =y =R
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Let us now look at the expectation
value of the spin:
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The spin density can be calculated
using the representation given in

Equation (32) as:
(37) := sldy ‘””

= (sin®sin ¢, sin @ cos ¢, cos ),
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This gives an easy physical
interpretation to the variables 6, @ as
angles which describe the projection
of the spin density on the axes. 6 is
the elevation angle of the spin density
vector and ¢ is the azimuthal angle of
the same. The velocity field can now
be calculated by inserting @ given in
Equation (32) into Equation (31):

(38) 7= %(T’x + COSQ?@) —

We are now in a position to calculate
the material derivative of the velocity
and obtain the equation of motion for
a particle with ([3], p. 393, Equation
(9.3.19)):
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The Pauli equation of motion differs
from the classical equation motion
and the Schrédinger

equation of motion. In addition to the
Schrédinger quantum force correction
we have an

additional spin quantum force
correction:
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as well as a term characterlzmg the
interaction of the spin with a gradient
of the magnetic field.

(41) FgmdBS = —F(ijJSj

As both the upper and lower spin
components of the wave function are
expanding in

free space the gradients which appear
in Fos will tend to diminish for any
macroscopic scale making this force
negligible. To estimate the condition
qualitatively we introduce the typical
spin length:

(42) Ls = min ic{1,2,3} |t75’i|_1

Using the above definition we may
estimate the spin quantum force:

(43) Fos = ol + ] = sl +
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this suggested the definition of the
hybrid typical length:
1 1., Ly Ly<L
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In terms of this typical length we may
write:
(45) o

Fge 4mL2L,g
Thus the conditions for a classical
trajectory become:
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Another important equation derived
from Equation (27) is the equation of
motion for the spin orientation vector
([31, p- 392, Equation (9.3.16)):
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The quantum correction to the
magnetic field explains [3] why a spin
picks up the orienta-tion of the field in
a Stern—Gerlach experiment instead
of precessing around it as a classical
magnetic dipole would.

Finally we remark that despite the
fact that the electron is (as far as the
empirical evidence suggests) a point
particle and thus cannot rotate with
respect to its center of mass as a rigid
finite body would, there is a long and
respectable tradition of attributing to
the electron a “classical” spin [31-
34], as if it was rigid body. Despite
some success of this approach we
regard it as highly non-intuitive.

5. Ehrenfest Theorem
According to the Copenhagen school of



quantum mechanics, no attribute can
be given to the electron unless it can
be measured (see for example [35]).
Now according to the Heisenberg
uncertainty rule, one cannot measure
both the position and momentum
(which are complementary attributes
and do not commute) of the electron
at the same time. Hence, two
attributes that are needed to define
a trajectory: position and direction of
propagation cannot be attributed to
the electron simultaneously. Thus the
above electron equations of motion
are not accepted by all quantum
physicists. In fact, physicists who
follow the Copenhagen school of
quantum mechanics declare that a
quantum electron does not have a
trajectory.

Of course, not all quantum physicists
follow the Copenhagen school, as
many follow Bohm’'s [2] school of
thought (Einstein, Holland [3], Durr
& Teufel [4] etc.) which do assign a
trajectory to the electron, despite the
fact that velocity and position cannot
be measured at the same time.
According to this school of thought a
trajectory is an ontological property of
the electron and it exists regardless
of our ability to measure it (in general
it is believed that reality exists
regardless of our ability to observe
it). The reader is also referred to
[36] which study proton trajectories.
Those differ from the subject of the
current paper which is electrons.
Protons are not point particles like
electrons and thus they can “spin”
also in a classical sense.

However, all quantum physicists
agree that one can describe the
trajectory of the expectation value
of various operators such as position
and momentum associated with the
electron’s trajectory. This calculation
is carried out through the Ehrenfest
Theorem [37]. The theorem states
that for every quantum operator Ao
with expectation value:

(48) <A, >= [d3x¢*Ag¢

the following equality holds:

d< A JA 1 . "
(49) % =< a_fo > +E < [AU;H] >,

[Ao, H] = AoH — A A,.

The position and velocity operators
defined as [37]:
(50) %=z, @= L —edy=21

m T m
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For a Schrddinger’s electron (that is
without spin) the following results are
obtained by Griffiths [37] by inserting
the above operators into Equation (49):

d<¥> 1 = 1 5
(51) i = ﬁ<[::,Hgl>:< To >
d<t> _ _ 97, I oo
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Thus the electron position expectation
value satisfies the equation:

(52) dzjtJE”) :§<ﬂgx§—5’xﬂo>+k<.§>
this equation resembles the classical
and quantum equations of motion
but also differs from them in many
important aspects. First let us
compare it with Equation (13), let us
also assume that & = o. In this case:

(53) £ jfzh =k <E(@t) >#AKE(< X >,1),

thus as noted by many authors, even
in this case the expectation value
equations differ from the classical
equation of motion except for a very
restrictive class of linear electric
fields. The difference is even more
pronounced for the case B # 0 which
only takes a conventional “Lorentz
force” form for a constant magnetic
field B [37]:

2 =
(54) 4 j; Z =K< B> xB+ <E >).

Comparing Equation (52) with the
quantum motion Equation (23), we see
that the expecta-tion value equation
does not contain a quantum force
term, which is a further justification

to our assumption that this term may
be neglected on macroscopic scales.
Let us now turn our attention to the
more realistic Pauli electron which
does possess spin, Equation (51) now
take the form:

(55)
dicins N oopti Aol
i _E<[XPHFJ>—E<[X,H51>—<U0)
d<tp> o7 1 s 2
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in which in the last term we use
the Einstein summation convention.
However:

(56) (5o, Bi] = L[tV — 4, B = - [¥, B
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The value of this commutation relation

can be deduced by operating with the

above operator on an arbitrary wave

function y.

(57) [T, Bily = _gﬁ,’ Bly =
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Or in operator jargon:
(58) [ﬁUrBJ = _%(vBF)

It thus follows that:
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in which we have used Equation (37).
Inserting Equation (59) into Equation
(55):

(60) Z<to> _d<to> kg, g pxs>

thk<E> —% <&VB >

comparing the above equation to
Equation (39) it follows that the
only quantum force surviving the
expectation value averaging is the
one describing the effect of the
magnetic field gradient on the spin
vector which is in accordance with
what should be expected in the
macroscopic limit thus leading to the
Stern—Gerlach experiment.



6. Conclusions: Spin
Orientation and
the Stern—Gerlach

Experiment

We have seen how the Ehrenfest
theorem approach causes “quantum
forces” to disap-pear. Those forces
disappear also in Bohm’s approach if
one consider macroscopic scales of
propagation.

The Stern—Gerlach experiment is an
example of using the spin force term
given in Equation (41) to separate
spin up and spin down particles
thus obtaining from a single ray of
particles two spots. If the magnetic
field gradient is dominant in a single
direction (say z) we may write
Equation (41) as:

(61) FgradBSz = _V(asz)gj

hence depending on the values 5;
some particle will move up and some
will move down creating two spots
(see Figure 1).

The Stern—Gerlach experiment is
usually performed with a neutral
particle, not with charged particles
such as electrons. The reason for this
is that generally speaking the classical
Lorentz forces are much stronger than
the quantum spin force and thus
the two-spot effect is not observed.
Holland shows by simulating Equation
(47) that the spins in a Stern—Gerlach
rotate in the direction or opposite
to the direction of the magnetic
field depending on the trajectory of
the particle, that is to which spot it
belongs (see Holland [3] Figure 9.13).
Notice, however, that from an energy
perspective the lowest energy belong
to the case in which the spin (and thus
its related magnetic dipole) point at
the direction of the field.

The energy value is given by the
expectation value of the Hamiltonian:

(62) E=<Hp>=<Hs>+p<B-7>.

Figure 1: A schematics of Stern—Gerlach experiment. Neutral particles
travelling through an inhomo-geneous magnetic field, and being deflected up
or down depending on their spin; (1) particle source,(2) beam of particles, (3)
inhomogeneous magnetic field, (4) classically expected result (neglecting the

quantum spin force), (5) observed result.

If the direction of the field B is defined
as a z direction it follows that:

(63) E=<HAs >+ < Bz >=< Hs >

+u /d3xBZ(a% —a7).

So particles with a definite spin
direction (up or down) may have an
upper or lower energy depending on
the value of p. For an electron p is the
Bohr magneton:

_ . leln
64) p=ps=- -
and thus lower spin electrons will
have a lower energy, if Bz is constant
we may write this
term in the “classical” form using a
magnetic dipole:

(65) E=<Hs>-f-B,

d=—u ./dsx(a% fa%)i = f d3x(af fa:‘r')é.

hence the magnetic dipole will point
in the direction of the field for a lower
energy configu-rations (spin down)
and in the opposite direction for the
higher energy configuration (spin
up). As systems tend to relax to their
lower energy state, one may ask why
do the particles in a Stern—-Gerlach
experiment do not relax to the spin
down configuration and instead split

to beams of spin up and spin down
with about the same size? The answer
may be connected to the fact that in
this type of experiment the electrons
feel the magnetic field for only a short
while and do not have enough time
to relax to their minimum energy
configurations.

This is not the case in NMR and MRI
experiment in which the magnetic
dipoles are under the influence
of a strong magnetic field, for a
long duration. In those cases the
magnetization defined as:

(66) M = ppji

satisfies the Bloch phenomenological
equations:

(67)
% = ’Tgum(M x B)x - %
% = ’}’gum(M X E}y - %
% = Yguo(M x B); MZ;IMO

in the above T, and T, are typical
relaxation times and y is a
gyromagnetic ratio which for an
electron takes the value:

2
(68) 1, — 28



The magnetization satisfying the
above equation eventually relaxes to
the direction of the field which is the
minimal energy configuration (Figure 2).
As a future direction to the current
research it may be interesting to
study the same problem for a fully
relativistic electron, however, this will
require using a Dirac equation rather
than Pauli’s equation.
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