LATEST NEWS

Navitas GaN CRPS185 3,200 W “Titanium Plus” Server Power Platform Drives the AI Revolution

New gallium nitride (GaN) integrated power ICs deliver high-speed, high-efficiency power in 40% smaller size than best-in-class, legacy silicon solutions for power-hungry AI and Edge computing.

TORRANCE, CA – August [3rd], 2023, Navitas Semiconductor, the only pure-play, next-generation power semiconductor company today announced that its CRPS185 3,200 W “Titanium Plus” server reference design not only surpasses the stringent 80Plus Titanium efficiency requirements, but also effectively satisfies the increasing power demands of AI data center power.

The rapid development and deployment of artificial intelligence (AI) including OpenAI’s ChatGPT, Microsoft’s Bing with AI, and Google’s Bard, has penetrated all aspects of people’s lives. New power-hungry AI processors like NVIDIA’s DGX GH200 ‘Grace Hopper’ demand up to 1,600 W each, are driving power-per-rack specifications from 30-40 kW up to 100 kW per cabinet. Meanwhile, with the global focus on energy conservation and emission reduction, as well as the latest European regulations, server power supplies must exceed the 80Plus ‘Titanium’ efficiency specification.

Navitas’ reference designs dramatically accelerate customer developments, minimize time-to-market, and set new industry benchmarks in energy efficiency, power density and system cost, enabled by GaNFast power ICs. These system platforms include complete design collateral with fully-tested hardware, embedded software, schematics, bill-of-materials, layout, simulation and hardware test results.

In this case, the ‘Common Redundant Power Supply’ (CRPS) form-factor specification was defined by the hyperscale Open Compute Project, including Facebook, Intel, Google, Microsoft, and Dell. Now, Navitas’ CRPS185 platform delivers a full 3,200 W of power in only 1U (40 mm) x 73.5mm x 185 mm (544 cc), achieving 5.9 W/cc, or almost 100 W/in3 power density. This is a 40% size reduction vs, the equivalent legacy silicon approach and easily exceeds the Titanium efficiency standard, reaching over 96.5% at 30% load, and over 96% stretching from 20% to 60% load, creating a ‘Titanium Plus’ benchmark, critical for data center operating models.

The CRPS185 uses the latest circuit designs including an interleaved CCM totem-pole PFC with full-bridge LLC. The critical components are Navitas’ new 650V GaNFast power ICs, with robust, high-speed integrated GaN drive to address the sensitivity and fragility issues associated with discrete GaN chips. Additionally, GaNFast power ICs offer extremely low switching losses, with a transient-voltage capability up to 800 V, and other high-speed advantages such as low gate charge (Qg), output capacitance (COSS) and no reverse-recovery loss (Qrr). As high-speed switching reduces the size, weight and cost of passive components in a power supply, Navitas estimates that GaNFast power ICs save 5% of the LLC-stage system material cost, plus $64 per power supply in electricity over 3 years.

Compared to traditional ‘Titanium’ solutions, the Navitas CRPS185 3,200 W ‘Titanium Plus’ design running at a typical 30% load can reduce electricity consumption by 757 kWh, and decrease carbon dioxide emissions by 755 kg over 3 years. This reduction is equivalent to saving 303 kg of coal. Not only does it help data center clients achieve cost savings and efficiency improvements, but it also contributes to the environmental goals of energy conservation and emission reduction.In addition to data center servers, this solution can also be widely used in applications such as switch/router power supplies, communications, and other computing applications.

“The popularity of AI applications like ChatGPT is just the beginning. As data center rack power increases by 2x-3x, up to 100 kW, delivering more power in a smaller space is key,” said Charles Zha, VP and GM of Navitas China. “We invite power designers and system architects to partner with Navitas and discover how a complete roadmap of high efficiency, high power density designs can cost-effectively, and sustainably accelerate their AI server upgrades.”


Credit:Navitas
Daria - New-Tech Magazine

Recent Posts

Quantum Machines to Establish Flagship Hub at the Illinois Quantum and Microelectronics Park

New collaboration will establish a quantum-control–enabled center at the IQMP to accelerate and scale fault-tolerant…

4 days ago

SENAI raises $6.2M to launch real-time intelligence for threats hiding in online video content

With a seed round led by 10D Ventures, SENAI emerges from stealth to help government…

4 days ago

Dassault Systèmes and NVIDIA Partner to Build Industrial AI Platform Powering Virtual Twins

 Shared industrial AI architecture combines Virtual Twins and AI infrastructure deployable at scale. Science-validated world…

4 days ago

New Power Module Enhances AI Data Center Power Density and Efficiency

Microchip’s MCPF1525 power module with PMBus™ delivers 25A DC-DC power, stackable up to 200A The…

6 days ago

Datarails Launches Spend Control to Give CFOs Full Visibility on Contracts and Eliminate Zombie Subscriptions

New AI-powered platform – the first with full ERP integration – includes an AI agent…

6 days ago

AccuLine reports 94% sensitivity in clinical trial of its 4-minute cardiac diagnostic system

The study validated the CORA system’s ability to rule out coronary artery disease with a…

1 week ago