LATEST NEWS

Industry’s first zero-drift, nanopower amplifier combines ultra-high precision with the lowest power consumption

TI delivers the most precise nanopower op amp, reducing system power and maximizing battery life in precision IoT, industrial and personal electronics applications

DALLAS (December 6, 2017) – Texas Instruments (TI) (NASDAQ: TXN) today introduced the first operational amplifier (op amp) to combine ultra-high precision with the industry’s lowest supply current. With exceptional power-to-precision performance, the LPV821 zero-drift, nanopower op amp enables engineers to attain the highest DC precision, while consuming 60 percent less power than competitive zero-drift devices. The LPV821 is designed for use in precision applications such as wireless sensing nodes, home and factory automation equipment, and portable electronics. For more information, see www.TI.com/LPV821-pr-eu.

The LPV821 op amp is the newest device in TI’s low-power amplifier portfolio, which enables engineers to design lighter, smaller and more portable applications with lower-capacity batteries and longer system lifetimes.

Key features and benefits of the LPV821 op amp

  • Exceptional power-to-precision performance: Consuming only nanoamps of supply current, while providing the high-precision benefits of optimized offset, drift and 1/f noise (flicker noise), the LPV821 is extremely beneficial for applications where both precision and low power are essential system needs, including industrial gas detectors, field transmitters and battery packs.
  • Sixty percent lower power consumption: With best-in-class supply current of 650 nA, the LPV821 extends battery lifetimes and enables lower power budgets in precision systems than competitive zero-drift devices.
  • High DC precision: TI’s zero-drift technology delivers a low initial offset of 10 µV and an offset drift of 0.02 µV/°C, eliminating temperature drift and flicker noise, and enabling engineers to attain the highest DC precision and dynamic error correction. Additionally, self-calibration technology helps engineers save system development cost and speed time to market.
  • No duty cycling: Nanopower consumption enables always-on applications such as continuous and blood glucose monitoring, and other electrochemical cell applications. Additionally, the low supply current decreases the external circuitry required to turn the amplifier on and off.
  • High-impedance sensor operation: An input bias current of 7 pA and low flicker noise at 3.9 µVp-p enables operation with high-impedance sensors, delivering more accurate measurements in precision systems.

Liat

Recent Posts

AccuLine reports 94% sensitivity in clinical trial of its 4-minute cardiac diagnostic system

The study validated the CORA system’s ability to rule out coronary artery disease with a…

7 hours ago

Factify Raises $73M to Kill the PDF and Build a New Document Standard for AI

Factify replaces static PDFs with authoritative, intelligent records that allow AI to take charge of…

7 hours ago

Mesh Security Raises $12 Million Series A to Power Autonomous Execution for Cybersecurity Mesh at Enterprise Scale

Mesh Security, the company delivering the world’s first Cybersecurity Mesh Architecture (CSMA) platform, today announced…

3 days ago

NetZero Tech Ventures Spotlights Strategic Reset in Climate and Energy Investments

New review by the investment firm examines how climate-tech investors are pivoting toward reliability, AI…

6 days ago

Datarails Raises $70M Series C Led by One Peak to Make AI the Foundation of the CFO’s Office

By eliminating the need for finance professionals to choose between Excel and external AI tools,…

1 week ago

Vicor technology enables Betterfrost to defrost glass in record time

Vicor high-density power modules enable 60 second defrosting time using 20x less energy Traditional approaches…

2 weeks ago