Developing robots that can walk more naturally

Walking on two legs isn’t as easy as it seems. For robots and their designers, it is an even bigger challenge! Researchers at EPFL’s Biorobotics Laboratory are testing novel algorithms to improve humanoids’ ability to walk and interact with humans.

For humans, it comes perfectly naturally. But walking on two legs is actually a complicated task, requiring several muscles to perform delicate balancing acts. That’s why, in spite of years of major technological advancements in the field, humanoid robots are still far from being able to get around easily and reliably. Engineers at EPFL’s Biorobotics Laboratory are testing new walking algoritms on a plateform called COMAN, short for COmpliant HuMANoid. This 95-cm-tall humanoid is designed specifically for studying walking – which is why it has no head.

COMAN was developed under the EU AMARSi project and is being used by several research teams. The EPFL team is looking specifically at the “brains” of the machine. “We developed algorithms that can improve the robot’s balance while it’s walking,” says Hamed Razavi, a researcher scientist at the Biorobotics Lab.

In harmony with symmetries

One of COMAN’s distinguishing features is its joints, which are integrated with elastic elements that give it greater flexibility when performing different tasks. The EPFL team came up with a novel control algorithm for the robot, based on the existing symmetries in the structure and dynamics of the robot’ as well as the mathematical equations representing the robot dynamics. “You could say we’re working in harmony with these symmetries rather than against them. As a result, we obtain a more natural and robust walking gait,” says Razavi.

The control algorithm uses sophisticated computer programs to carefully analyze the date received from the robot – including its position, velocity, joint angles, etc. – and sends appropriate commands to the motors, telling them what to do in order to maintain the robot’s balance. “For example, if someone pushes COMAN, for example, our algorithms will calculate exactly where its foot should land in order to counteract the perturbation,” says Razavi.

Climbing stairs and opening doors

The algorithms are geared towards three types of realworld applications. The first is carrying out rescue missions in disastrous scenarios. “In environments designed by humans – like a nuclear power plant where there are stairs to climb and doors to open – humanoid robots can get around more easily than robots with wheels,” says Razavi. The second is helping with tasks like carrying heavy boxes or moving objects (see box). And the third is creating exoskeletons for the disabled.

“Making the robots more stable is just the tip of the iceberg,” says Razavi. The next step is refining the algorithms so that the humanoids have a wider range of movement and can overcome obstacles and walk on irregular or sloped surfaces.

Lihi

Comments are closed.

Recent Posts

BeyondTrust Acquires Entitle, Strengthening Privileged Identity Security Platform with Paradigm Shifting Just-in-Time Access and Identity Governance

Entitle is a pioneering privilege management solution that discovers, manages, and automates just-in-time (JIT) access and modern identity governance and…

1 week ago

Samtec Introduces SIBORG Tool to Speed Component Launch Designs

Available freely to Samtec customers under NDA, SIBORG (Signal Integrity Breakout Region Guru) works with Ansys HFSS 3D Layout to…

1 week ago

Accelerating Mass Business AI Adoption: NeuReality Launches Developer Portal for NR1 Inference Platform, Expanding Affordable AI Access

Entire NR1 system purpose-built for a more affordable AI infrastructure allowing for faster deployment; furthering AI’s reach into more parts…

2 weeks ago

Dot Compliance Raises a $17.5 Million Up-Round in Series B Extension Funding to Advance New Category of AI-driven Compliance

Following rapid growth in its customer base to over 400, funding will fuel further AI development and create a hybrid…

2 weeks ago

Tektronix and recently acquired EA Elektro-Automatik now offer expanded power portfolio for engineers who are electrifying our world

The addition of EA’s high-efficiency regenerative power supplies greatly expands Tektronix’s trusted offering Tektronix, Inc, a leading provider in test…

2 weeks ago

Melexis unveils fully integrated inductive switch

Melexis reveals its groundbreaking Induxis® switch, the MLX92442. Contactless, magnet-free, and strayfield immune, this monolithic solution directly detects conductive targets.…

2 weeks ago