LATEST NEWS

Self-assembling nanoparticle arrays can switch between a mirror and a window

By finely tuning the distance between nanoparticles in a single layer, researchers have made a filter that can change between a mirror and a window.

The development could help scientists create special materials whose optical properties can be changed in real time. These materials could then be used for applications from tuneable optical filters to miniature chemical sensors.

Creating a ‘tuneable’ material – one which can be accurately controlled – has been a challenge because of the tiny scales involved. In order to tune the optical properties of a single layer of nanoparticles – which are only tens of nanometres in size each – the space between them needs to be set precisely and uniformly.

To form the layer, the team of researchers from Imperial College London created conditions for gold nanoparticles to localise at the interface between two liquids that do not mix.

By applying a small voltage across the interface, the team have been able to demonstrate a tuneable nanoparticle layer that can be dense or sparse, allowing for switching between a reflective mirror and a transparent surface. The research is published today in Nature Materials.

Study co-author Professor Joshua Edel, from the Department of Chemistry at Imperial, said: “It’s a really fine balance – for a long time we could only get the nanoparticles to clump together when they assembled, rather than being accurately spaced out. But many models and experiments have brought us to the point where we can create a truly tuneable layer.”

The video above shows the system in action. The layer first acts as a window onto a £10 note below, and then reflects the £1 coin above when a voltage is applied.

The distance between the nanoparticles determines whether the layer permits or reflects different wavelengths of light. At one extreme, all the wavelengths are reflected, and the layer acts as a mirror. At the other extreme, where the nanoparticles are dispersed, all wavelengths are permitted through the interface and it acts as a window.

It was remarkable how closely the theory matched experimental results.

– Professor Alexei Kornyshev

In contrast to previous nanoscopic systems that used chemical means to change the optical properties, the team’s electrical system is reversible.

Study co-author Professor Alexei Kornyshev, from the Department of Chemistry at Imperial, said: “Finding the correct conditions to achieve reversibility required fine theory; otherwise it would have been like searching for a needle in a haystack. It was remarkable how closely the theory matched experimental results.”

Co-author Professor Anthony Kucernak, also from the Department of Chemistry, commented: “Putting theory into practice can be difficult, as one always has to be aware of material stability limits, so finding the correct electrochemical conditions under which the effect could occur was challenging.”

Professor Kornyshev added: “The whole project was only made possible by the unique knowhow and abilities and enthusiasm of the young team members, including Dr Yunuen Montelongo and Dr Debarata Sikdar, amongst others who all have diverse expertise and backgrounds.”

Electrotuneable Nanoplasmonic Liquid Mirror’ by Yunuen Montelongo, Debabrata Sikdar, Ye Ma, Alastair J. S. McIntosh, Leonora Velleman, Anthony R. Kucernak, Joshua B. Edel, and Alexei A. Kornyshev is published in Nature Materials.

Lihi

Recent Posts

AccuLine reports 94% sensitivity in clinical trial of its 4-minute cardiac diagnostic system

The study validated the CORA system’s ability to rule out coronary artery disease with a…

4 hours ago

Factify Raises $73M to Kill the PDF and Build a New Document Standard for AI

Factify replaces static PDFs with authoritative, intelligent records that allow AI to take charge of…

4 hours ago

Mesh Security Raises $12 Million Series A to Power Autonomous Execution for Cybersecurity Mesh at Enterprise Scale

Mesh Security, the company delivering the world’s first Cybersecurity Mesh Architecture (CSMA) platform, today announced…

3 days ago

NetZero Tech Ventures Spotlights Strategic Reset in Climate and Energy Investments

New review by the investment firm examines how climate-tech investors are pivoting toward reliability, AI…

6 days ago

Datarails Raises $70M Series C Led by One Peak to Make AI the Foundation of the CFO’s Office

By eliminating the need for finance professionals to choose between Excel and external AI tools,…

1 week ago

Vicor technology enables Betterfrost to defrost glass in record time

Vicor high-density power modules enable 60 second defrosting time using 20x less energy Traditional approaches…

2 weeks ago