LATEST NEWS

Organic electronics can use power from socket

Organic light-emitting devices and printed electronics can be connected to a socket in the wall by way of a small, inexpensive organic converter, developed in a collaboration between Linköping University and Umeå University.

Printed electronics and organic light-emitting devices now perform at levels sufficient for a number of eco-friendly, energy-efficient applications. Previously the idea has been to drive the organic electronics using solar cells, batteries or wireless transformers, which works well in many cases. But for fixed installations like lighting, signage or UV-blocking windows, it is convenient to use a wall socket. Until now this has not been possible, because the high voltage damages the electronics.

Thin-film transistors

Docent Deyu Tu from LiU’s Division of Information Coding has led a project where colleagues at Umeå University joined forces to find a solution to this problem. And they have now been able to demonstrate an organic converter that makes it possible to drive organic light-emitting devices with high luminescence, and to charge supercapacitors, both using electricity from an ordinary wall socket.

The converter consists of diode-connected organic thin-film transistors, operated at high voltages up to 325 V, with the capacity to transform high alternating current (AC) to a selected direct current (DC).

“For the first time in the world we have been able to demonstrate an AC/DC converter in organic electronics that functions at voltages above 300 V,” says Deyu Tu.

“Our converter paves the way for a wave of flexible, thin, cost-effective and eco-friendly solutions for the electronics of the future.”

A pioneer work

This is a pioneer work of organic AC/DC converters, a first stage to prove the concept of organic power electronics. To be used in real products, the power conversion efficiency needs to be improved.

”We have initiated the follow-up work to deal with this issue”, says Deyu Tu.

The results have been published in two journals – Organic Electronics and ECS Transactions – and have generated so much interest that Deyu Tu has been invited to speak at major conferences in China and Japan.

The project has received financial support from the Swedish Foundation for Strategic Research.

Christian Larsen, Robert Forchheimer, Ludvig Edman, Deyu Tu, Design, fabrication and application of organic power converters: Driving light-emitting electrochemical cells from the AC mains, Organic Electronics https://dx.doi.org/10.1016/j.orgel.2017.02.036

Vahid Keshmiri, Christian Larsen, Ludvig Edman, Robert Forchheimer, Deyu Tu, A Current Supply with Single Organic Thin-Film Transistor for Charging Supercapacitors, ECS Transactions, 75 (10) 217-222 (2016).
https://dx.doi.org/10.1149/07510.0217ecst

Liat

Recent Posts

AccuLine reports 94% sensitivity in clinical trial of its 4-minute cardiac diagnostic system

The study validated the CORA system’s ability to rule out coronary artery disease with a…

2 hours ago

Factify Raises $73M to Kill the PDF and Build a New Document Standard for AI

Factify replaces static PDFs with authoritative, intelligent records that allow AI to take charge of…

2 hours ago

Mesh Security Raises $12 Million Series A to Power Autonomous Execution for Cybersecurity Mesh at Enterprise Scale

Mesh Security, the company delivering the world’s first Cybersecurity Mesh Architecture (CSMA) platform, today announced…

3 days ago

NetZero Tech Ventures Spotlights Strategic Reset in Climate and Energy Investments

New review by the investment firm examines how climate-tech investors are pivoting toward reliability, AI…

6 days ago

Datarails Raises $70M Series C Led by One Peak to Make AI the Foundation of the CFO’s Office

By eliminating the need for finance professionals to choose between Excel and external AI tools,…

1 week ago

Vicor technology enables Betterfrost to defrost glass in record time

Vicor high-density power modules enable 60 second defrosting time using 20x less energy Traditional approaches…

2 weeks ago