LATEST NEWS

3D-nanoprinting to turbocharge microscopes

EPFL researchers have printed nanometric-scale sensors capable of improving the performance of atomic force microscopes.

Tiny sensors made through nanoscale 3D printing may be the basis for the next generation of atomic force microscopes. These nanosensors can enhance the microscopes’ sensitivity and detection speed by miniaturizing their detection component up to 100 times. The sensors were used in a real-world application for the first time at EPFL, and the results are published in Nature Communications.

A tiny turntable that ‘listens’ to atoms
Atomic force microscopy is based on powerful technology that works a little like a miniature turntable. A tiny cantilever with a nanometric tip passes over a sample and traces its relief, atom by atom. The tip’s infinitesimal up-and-down movements are picked up by a sensor so that the sample’s topography can be determined.

One way to improve atomic force microscopes is to miniaturize the cantilever, as this will reduce inertia, increase sensitivity, and speed up detection. Researchers at EPFL’s Laboratory for Bio- and Nano-Instrumentation achieved this by equipping the cantilever with a 5-nanometer thick sensor made with a nanoscale 3D-printing technique. “Using our method, the cantilever can be 100 times smaller,” says Georg Fantner, the lab’s director.

Electrons that jump over obstacles
The nanometric tip’s up-and-down movements can be measured through the deformation of the sensor placed at the fixed end of the cantilever. But because the researchers were dealing with minute movements – smaller than an atom – they had to pull a trick out of their hat.

Together with Michael Huth’s lab at Goethe Universität at Frankfurt am Main, they developed a sensor made up of highly conductive platinum nanoparticles surrounded by an insulating carbon matrix. Under normal conditions, the carbon isolates the electrons. But at the nano-scale, a quantum effect comes into play: some electrons jump through the insulating material and travel from one nanoparticle to the next. “It’s sort of like if people walking on a path came up against a wall and only the courageous few managed to climb over it,” said Fantner.

When the shape of the sensor changes, the nanoparticles move further away from each other and the electrons jump between them less frequently. Changes in the current thus reveal the deformation of the sensor and the composition of the sample.

Tailor-made sensors
The researchers’ real feat was in finding a way to produce these sensors in nanoscale dimensions while carefully controlling their structure and, by extension, their properties. “In a vacuum, we distribute a precursor gas containing platinum and carbon atoms over a substrate. Then we apply an electron beam. The platinum atoms gather and form nanoparticles, and the carbon atoms naturally form a matrix around them,” said Maja Dukic, the article’s lead author. “By repeating this process, we can build sensors with any thickness and shape we want. We have proven that we could build these sensors and that they work on existing infrastructures. Our technique can now be used for broader applications, ranging from biosensors, ABS sensors for cars, to touch sensors on flexible membranes in prosthetics and artificial skin.”
—–

Source: Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers

Liat

Recent Posts

Quantum Art Raises $100 Million in Series A Round to Drive Scalable, Multi-Core Quantum Computing

Funding will support Quantum Art in reaching a 1,000-qubit commercial platform and global expansion Quantum…

1 day ago

Hud Ships First Runtime Code Sensor to Bring Production Reality to Code Generation

Hud automatically captures live service and function-level data from production- providing the missing context for…

1 day ago

Port Raises $100M Series C to Power Agentic Engineering Platform

General Atlantic leads round valuing company at $800M as Port tackles the 90% of developer…

1 day ago

Prime Security Raises $20M to Transform Product Security with the First Agentic Security Architect

Prime’s new platform accelerates development with automated security reviews and full visibility into design-level risks…

2 days ago

Safebooks AI Raises $15 Million to Automate Revenue Data Integrity for Enterprise Finance Teams

Safebooks Inc., the pioneer in Financial Data Governance, today announced its emergence from stealth and…

2 days ago

NVIDIA and AWS Expand Full-Stack Partnership, Providing the Secure, High-Performance Compute Platform Vital for Future Innovation

AWS integrates NVIDIA NVLink Fusion into its custom silicon, including the next-generation Tranium4 chip, Graviton…

1 week ago