LATEST NEWS

New test to improve commercial viability of printable electronics

Scientists at the National Physical Laboratory (NPL) have developed a new, non-destructive method of detecting the orientation of molecules in organic semiconductor transistors using Raman spectroscopy. This will create a faster and more flexible method of measuring the efficiency of electrical conductivity in a printed circuit, enabling scientists to understand the quality of their devices.

Modern electronic devices such as solar cells can lower costs and weight by using organic semiconductors, in this case organic polymer molecules which conduct electricity, as they can be printed onto thin sheets of plastic material in large volumes. However, printing these polymer molecules means that they can crystallise in all directions which reduces their conductivity. Thus, being able to measure the orientation of these molecules is a crucial part of the quality control process.

Making non-destructive measurements of these molecules has been impossible before now. By using Raman spectroscopy, scientists can observe the way in which a molecule vibrates when light shines on it. Different vibrations cause light reflected from the molecule to have different frequencies. Molecules with different orientations vibrate differently as lasers are passed over them, resulting in a range of frequencies. The technique developed by NPL uses these reflected frequencies to discern the three dimensional orientation of the molecules within the printed circuit.

Using the new test, the efficiency of the production process for electronic devices can be drastically increased making them cheaper, faster and of better quality.

Dr Sebastian Wood, a Higher Research Scientist at NPL, says: “Understanding molecular orientation has been an area of interest to the printed electronics community for over a decade, with various one and two dimensional tests being undertaken. NPL is the first organisation to characterise this important property efficiently and in three dimensions, without destroying the test circuit. We’re excited to be the organisation that enables what could be a revolutionary breakthrough in the performance and commercial viability of printable electronics.”

The research has been published in Scientific Reports and reported in New Electronics

Find out more about Electrochemistry at NPL or contact Sebastian Wood for more information

Liat

Recent Posts

Matia Raises $21M Series A to Scale Unified Data Infrastructure for the AI Era

Matia, the unified data operations platform, today announced it has raised $21 million in Series…

6 days ago

TMR 10WI series 10 watt DC/DC converter in compact SIP package

Compact SIP-8 plastic case Wide input range: 4.5–18, 9–36 and 18–75 VDC Certification according to…

1 week ago

Quantum Machines to Establish Flagship Hub at the Illinois Quantum and Microelectronics Park

New collaboration will establish a quantum-control–enabled center at the IQMP to accelerate and scale fault-tolerant…

2 weeks ago

SENAI raises $6.2M to launch real-time intelligence for threats hiding in online video content

With a seed round led by 10D Ventures, SENAI emerges from stealth to help government…

2 weeks ago

Dassault Systèmes and NVIDIA Partner to Build Industrial AI Platform Powering Virtual Twins

 Shared industrial AI architecture combines Virtual Twins and AI infrastructure deployable at scale. Science-validated world…

2 weeks ago

New Power Module Enhances AI Data Center Power Density and Efficiency

Microchip’s MCPF1525 power module with PMBus™ delivers 25A DC-DC power, stackable up to 200A The…

2 weeks ago