LATEST NEWS

New test to improve commercial viability of printable electronics

Scientists at the National Physical Laboratory (NPL) have developed a new, non-destructive method of detecting the orientation of molecules in organic semiconductor transistors using Raman spectroscopy. This will create a faster and more flexible method of measuring the efficiency of electrical conductivity in a printed circuit, enabling scientists to understand the quality of their devices.

Modern electronic devices such as solar cells can lower costs and weight by using organic semiconductors, in this case organic polymer molecules which conduct electricity, as they can be printed onto thin sheets of plastic material in large volumes. However, printing these polymer molecules means that they can crystallise in all directions which reduces their conductivity. Thus, being able to measure the orientation of these molecules is a crucial part of the quality control process.

Making non-destructive measurements of these molecules has been impossible before now. By using Raman spectroscopy, scientists can observe the way in which a molecule vibrates when light shines on it. Different vibrations cause light reflected from the molecule to have different frequencies. Molecules with different orientations vibrate differently as lasers are passed over them, resulting in a range of frequencies. The technique developed by NPL uses these reflected frequencies to discern the three dimensional orientation of the molecules within the printed circuit.

Using the new test, the efficiency of the production process for electronic devices can be drastically increased making them cheaper, faster and of better quality.

Dr Sebastian Wood, a Higher Research Scientist at NPL, says: “Understanding molecular orientation has been an area of interest to the printed electronics community for over a decade, with various one and two dimensional tests being undertaken. NPL is the first organisation to characterise this important property efficiently and in three dimensions, without destroying the test circuit. We’re excited to be the organisation that enables what could be a revolutionary breakthrough in the performance and commercial viability of printable electronics.”

The research has been published in Scientific Reports and reported in New Electronics

Find out more about Electrochemistry at NPL or contact Sebastian Wood for more information

Liat

Recent Posts

NVIDIA Acquires Open-Source Workload Management Provider SchedMD

NVIDIA will continue to distribute SchedMD’s open-source, vendor-neutral Slurm software, ensuring wide availability for high-performance…

30 minutes ago

Stratasys Supercharges Airbus Production: More Than 25,000 Parts 3D-Printed this Year; 200,000+ Already in Flight

Powered by Stratasys (NASDAQ: SSYS) technology, Airbus is producing more than 25,000 flight-ready 3D-printed parts…

2 days ago

Quantum Art Raises $100 Million in Series A Round to Drive Scalable, Multi-Core Quantum Computing

Funding will support Quantum Art in reaching a 1,000-qubit commercial platform and global expansion Quantum…

5 days ago

Hud Ships First Runtime Code Sensor to Bring Production Reality to Code Generation

Hud automatically captures live service and function-level data from production- providing the missing context for…

5 days ago

Port Raises $100M Series C to Power Agentic Engineering Platform

General Atlantic leads round valuing company at $800M as Port tackles the 90% of developer…

5 days ago

Prime Security Raises $20M to Transform Product Security with the First Agentic Security Architect

Prime’s new platform accelerates development with automated security reviews and full visibility into design-level risks…

6 days ago