BAE Systems develops laser airspeed sensor for aircraft

In an aviation first, British scientists in Chelmsford have successfully trialled a highly accurate laser airspeed sensor for use in the next generation of high altitude aircraft which will increase survivability while improving performance and fuel efficiency.

The Laser Air Speed Sensing Instrument (LASSI) which is being exhibited at this year’s Farnborough International Airshow sets itself apart from conventional methods as it accurately measures velocity even at low speeds.

Conventionally, air speed is determined using pitot tubes – which protrude from aircraft and sense variations in air pressure with speed. Although usually heated, these tubes are vulnerable to blockage in icy conditions. They could also be damaged by collisions with birds and when the aircraft is on the ground.

Operating on the same principle as roadside speed-guns, the new technique works by bouncing ultraviolet laser light off air molecules and measuring the change in ‘colour’ of the reflections caused by the Doppler Effect*. In layman’s terms, the further away from the ultraviolet light the reflection is, the faster the aircraft is travelling. Although invisible to the human eye, the detector can identify minute changes in colour – which indicate the aircraft’s airspeed.

Dr Leslie Laycock, Executive Scientist at BAE Systems said, “LASSI is a ground-breaking piece of technology which is challenging the conventional method of measuring air speed.

“Conventional air data sensors which protrude from the sides of aircraft must be carefully located to work properly and are inaccurate at low airspeeds. LASSI can be located completely inside the aircraft and is accurate at low airspeeds. It can even measure negative air velocities.  These features should ensure that the equipment is robust against damage, require less maintenance and be easier to operate at lower airspeeds.

“A significant benefit is that LASSI has the potential to detect air speed at a distance, meaning an aircraft could predict oncoming turbulence and change course accordingly.”

BAE Systems has successfully trialled LASSI in a low speed wind tunnel and on ground vehicles. Engineers from the Company predict the component technology could be miniaturised and be in use within the next five years and are now investigating how it could be integrated in future aircraft.
Liat

Comments are closed.

Recent Posts

BeyondTrust Acquires Entitle, Strengthening Privileged Identity Security Platform with Paradigm Shifting Just-in-Time Access and Identity Governance

Entitle is a pioneering privilege management solution that discovers, manages, and automates just-in-time (JIT) access and modern identity governance and…

2 weeks ago

Samtec Introduces SIBORG Tool to Speed Component Launch Designs

Available freely to Samtec customers under NDA, SIBORG (Signal Integrity Breakout Region Guru) works with Ansys HFSS 3D Layout to…

2 weeks ago

Accelerating Mass Business AI Adoption: NeuReality Launches Developer Portal for NR1 Inference Platform, Expanding Affordable AI Access

Entire NR1 system purpose-built for a more affordable AI infrastructure allowing for faster deployment; furthering AI’s reach into more parts…

2 weeks ago

Dot Compliance Raises a $17.5 Million Up-Round in Series B Extension Funding to Advance New Category of AI-driven Compliance

Following rapid growth in its customer base to over 400, funding will fuel further AI development and create a hybrid…

2 weeks ago

Tektronix and recently acquired EA Elektro-Automatik now offer expanded power portfolio for engineers who are electrifying our world

The addition of EA’s high-efficiency regenerative power supplies greatly expands Tektronix’s trusted offering Tektronix, Inc, a leading provider in test…

2 weeks ago

Melexis unveils fully integrated inductive switch

Melexis reveals its groundbreaking Induxis® switch, the MLX92442. Contactless, magnet-free, and strayfield immune, this monolithic solution directly detects conductive targets.…

2 weeks ago