Categories: LATEST NEWS

Imec Boosts Performance of Beyond-Silicon Devices

Record Performance Gate-All-Around InGaAs Nanowire FETs and InGaAs TFETs Presented at IEDM 2015

WASHINGTON – International Electron Devices Meeting 2015 (IEDM) – Dec., 2015—At this week’s IEEE IEDM conference, nano-electronics research center imec demonstrates record enhancement of novel InGaAs Gate-All-Around (GAA) channel devices integrated on 300mm Silicon and explores emerging tunnel devices based on optimization of the same III-V compound semiconductor.
III-V-on-Si GAA devices with a record peak transconductance at 0.5V has been achieved by optimizing both the channel epitaxy quality and the gate-channel passivation. In search of device technologies beyond FinFETs and GAA-nanowires for sub-0.5V operations, imec investigates InGaAs Tunnel-FET (TFETs). homo-junction III-V TFETs achieving a record ON-state current (ION) and superior subthreshold swing have been demonstrated. These results increase the knowledge on the impact of defectivity and channel optimization on device operations, and pave the way to advanced logic devices based on III-V-On-Si for high performance or ultra-low power applications.
Imec’s R&D program on advanced logic scaling is targeting the new and mounting challenges for performance, power, cost, and density scaling for future process technologies. One of the directions that imec is following, looks into beyond-Si solutions, such as integrating high-mobility materials into the channels of CMOS devices to increase their performance, and the integration challenges of these materials with silicon. Gate-All-Around Nanowire (GAA NW) FETs have been proven to offer significantly better short-channel electrostatics, and quantum-well FinFETs (with SiGe, Ge, or III-V channels) achieving high carrier mobility, are interesting concepts to increase device performance. Tunnel FETs, on the other hand, offering a steeper than 60mV/dec subthreshold swing, are a promising option for ultra-low power applications.

At IEDM, imec presented gate-all-around InGaAs Nanowire FETs (Lg=50nm) that performed at an average peak transconductance (gm) of 2200µS/µm with a SSSAT of 110mV/dec. Imec succeeded in increasing the performance by gate stack engineering using a novel gate stack ALD inter-layer (IL) material developed by ASM, and high pressure annealing. The novel IL/HfO2 stack achieved a 2.2 times higher gm for a device with a gate length (Lg) of 50nm, compared to the reference Al2O3/HfO2 stack.
Imec also presented a planar InGaAs homo-junction TFET with 70 percent Indium (In) content. The increase of In content from 53 to 70 percent in a 8nm channel, was found to significantly boost the performance of the device. A record ON-state current (ION) of 4µA/µm (IOFF = 100pA/µm, Vdd = 0.5V and Vd = 0.3V) with a minimum subthreshold swing (SSmin) of 60mV/dec at 300k was obtained for a planar homo-junction TFET device. It was also shown that subthreshold swing and transconductance in TFET devices were more immune to positive bias temperature instability (PBTI) compared to MOSFET devices.
“Imec’s R&D enables Moore’s law beyond the 5nm technology node through 3 approaches. First, we are tackling the technology challenges to extend silicon CMOS devices towards smaller nodes. At the same time, we research into disruptive heterogeneous solutions for beyond-silicon CMOS devices to increase performance and introduce new functionalities. Lastly, imec pursues emerging beyond-CMOS devices and systems such as spintronics to investigate further functional scaling beyond device-density-driven scaling,” stated Aaron Thean, vice president and director of imec’s advanced logic R&D program. “Boosting the performance of advanced compound semiconductor logic devices is extremely important, and these results support the quest of the semiconductor industry to find solutions that enable 5nm technology nodes and beyond.”

“ASM and imec have a long history of R&D collaboration using many of ASM’s products and advanced deposition and thermal processes,” says Ivo Raaijmakers, ASM CTO and Director of R&D. “As a leader in ALD, we are glad to see this breakthrough new ALD material now demonstrated in imec’s high mobility devices and presented at IEDM 2015.”

Imec’s research into advanced logic scaling is performed in cooperation with imec’s key partners in its core CMOS programs including GlobalFoundries, Intel, Micron, Panasonic, Qualcomm, Samsung, SK Hynix, Sony and TSMC.

TEM of complete gate-all-around InGaAs Nanowire FET and HRTEM of the gatestack

Liat

Recent Posts

NVIDIA and AWS Expand Full-Stack Partnership, Providing the Secure, High-Performance Compute Platform Vital for Future Innovation

AWS integrates NVIDIA NVLink Fusion into its custom silicon, including the next-generation Tranium4 chip, Graviton…

3 days ago

Molex Names Top 10 Connectivity and Electronics Design Predictions for 2026, Fueled by Far-Reaching Impact of Artificial Intelligences Across Major Industries

Intensifying AI demands continue to proliferate across aerospace and defense, automotive, consumer electronics, data center,…

3 days ago

Tria Technologies to bring Qualcomm DragonwingTM IQ-6 Series to market with two new compute modules

 TRIA SM2S-IQ615 and TRIA OSM-LF-IQ615 modules enable next-generation edge AI systems across a wide range…

3 days ago

At NeurIPS, NVIDIA Advances Open Model Development for Digital and Physical AI

NVIDIA releases new AI tools for speech, safety and autonomous driving — including NVIDIA DRIVE…

3 days ago

OMRON eases PCB-relay assembly and replacement with P6K surface-mountable sockets

 P6K sockets for G6K through-hole relays ensure reliability, flexibility, and repairability  OMRON Electronic Components Europe…

3 days ago

GEOX.AI and Mitsui Sumitomo Insurance Launch AI-Powered Initiative to Assess Building Risk Across Japan

GEOX.AI, a global leader in AI-driven property intelligence, announced today a strategic partnership with Mitsui…

3 days ago