Categories: LATEST NEWS

Imec Boosts Performance of Beyond-Silicon Devices

Record Performance Gate-All-Around InGaAs Nanowire FETs and InGaAs TFETs Presented at IEDM 2015

WASHINGTON – International Electron Devices Meeting 2015 (IEDM) – Dec., 2015—At this week’s IEEE IEDM conference, nano-electronics research center imec demonstrates record enhancement of novel InGaAs Gate-All-Around (GAA) channel devices integrated on 300mm Silicon and explores emerging tunnel devices based on optimization of the same III-V compound semiconductor.
III-V-on-Si GAA devices with a record peak transconductance at 0.5V has been achieved by optimizing both the channel epitaxy quality and the gate-channel passivation. In search of device technologies beyond FinFETs and GAA-nanowires for sub-0.5V operations, imec investigates InGaAs Tunnel-FET (TFETs). homo-junction III-V TFETs achieving a record ON-state current (ION) and superior subthreshold swing have been demonstrated. These results increase the knowledge on the impact of defectivity and channel optimization on device operations, and pave the way to advanced logic devices based on III-V-On-Si for high performance or ultra-low power applications.
Imec’s R&D program on advanced logic scaling is targeting the new and mounting challenges for performance, power, cost, and density scaling for future process technologies. One of the directions that imec is following, looks into beyond-Si solutions, such as integrating high-mobility materials into the channels of CMOS devices to increase their performance, and the integration challenges of these materials with silicon. Gate-All-Around Nanowire (GAA NW) FETs have been proven to offer significantly better short-channel electrostatics, and quantum-well FinFETs (with SiGe, Ge, or III-V channels) achieving high carrier mobility, are interesting concepts to increase device performance. Tunnel FETs, on the other hand, offering a steeper than 60mV/dec subthreshold swing, are a promising option for ultra-low power applications.

At IEDM, imec presented gate-all-around InGaAs Nanowire FETs (Lg=50nm) that performed at an average peak transconductance (gm) of 2200µS/µm with a SSSAT of 110mV/dec. Imec succeeded in increasing the performance by gate stack engineering using a novel gate stack ALD inter-layer (IL) material developed by ASM, and high pressure annealing. The novel IL/HfO2 stack achieved a 2.2 times higher gm for a device with a gate length (Lg) of 50nm, compared to the reference Al2O3/HfO2 stack.
Imec also presented a planar InGaAs homo-junction TFET with 70 percent Indium (In) content. The increase of In content from 53 to 70 percent in a 8nm channel, was found to significantly boost the performance of the device. A record ON-state current (ION) of 4µA/µm (IOFF = 100pA/µm, Vdd = 0.5V and Vd = 0.3V) with a minimum subthreshold swing (SSmin) of 60mV/dec at 300k was obtained for a planar homo-junction TFET device. It was also shown that subthreshold swing and transconductance in TFET devices were more immune to positive bias temperature instability (PBTI) compared to MOSFET devices.
“Imec’s R&D enables Moore’s law beyond the 5nm technology node through 3 approaches. First, we are tackling the technology challenges to extend silicon CMOS devices towards smaller nodes. At the same time, we research into disruptive heterogeneous solutions for beyond-silicon CMOS devices to increase performance and introduce new functionalities. Lastly, imec pursues emerging beyond-CMOS devices and systems such as spintronics to investigate further functional scaling beyond device-density-driven scaling,” stated Aaron Thean, vice president and director of imec’s advanced logic R&D program. “Boosting the performance of advanced compound semiconductor logic devices is extremely important, and these results support the quest of the semiconductor industry to find solutions that enable 5nm technology nodes and beyond.”

“ASM and imec have a long history of R&D collaboration using many of ASM’s products and advanced deposition and thermal processes,” says Ivo Raaijmakers, ASM CTO and Director of R&D. “As a leader in ALD, we are glad to see this breakthrough new ALD material now demonstrated in imec’s high mobility devices and presented at IEDM 2015.”

Imec’s research into advanced logic scaling is performed in cooperation with imec’s key partners in its core CMOS programs including GlobalFoundries, Intel, Micron, Panasonic, Qualcomm, Samsung, SK Hynix, Sony and TSMC.

TEM of complete gate-all-around InGaAs Nanowire FET and HRTEM of the gatestack

Liat

Recent Posts

New Power Module Enhances AI Data Center Power Density and Efficiency

Microchip’s MCPF1525 power module with PMBus™ delivers 25A DC-DC power, stackable up to 200A The…

16 hours ago

Datarails Launches Spend Control to Give CFOs Full Visibility on Contracts and Eliminate Zombie Subscriptions

New AI-powered platform – the first with full ERP integration – includes an AI agent…

16 hours ago

AccuLine reports 94% sensitivity in clinical trial of its 4-minute cardiac diagnostic system

The study validated the CORA system’s ability to rule out coronary artery disease with a…

3 days ago

Factify Raises $73M to Kill the PDF and Build a New Document Standard for AI

Factify replaces static PDFs with authoritative, intelligent records that allow AI to take charge of…

3 days ago

Mesh Security Raises $12 Million Series A to Power Autonomous Execution for Cybersecurity Mesh at Enterprise Scale

Mesh Security, the company delivering the world’s first Cybersecurity Mesh Architecture (CSMA) platform, today announced…

6 days ago

NetZero Tech Ventures Spotlights Strategic Reset in Climate and Energy Investments

New review by the investment firm examines how climate-tech investors are pivoting toward reliability, AI…

1 week ago